Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
1.
Pharmacol Rep ; 76(2): 400-415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530582

RESUMO

BACKGROUND: In predictions about hepatic clearance (CLH), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells. METHODS: The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA). RESULTS: This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface. CONCLUSIONS: We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.


Assuntos
Dextranos , Transportadores de Ânions Orgânicos , Humanos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/farmacologia , Células HEK293 , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Hepatócitos/metabolismo , Fígado , Proteínas de Membrana Transportadoras/metabolismo , Albuminas , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
2.
Drug Metab Dispos ; 52(5): 355-367, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38485280

RESUMO

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 (collectively, OATP1B) transporters encoded by the solute carrier organic anion transporter (SLCO) genes mediate uptake of multiple pharmaceutical compounds. Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease (NAFLD), decreases OATP1B abundance. This research characterized the pathologic and pharmacokinetics effects of three diet- and one chemical-induced NAFLD model in male and female humanized OATP1B mice, which comprises knock-out of rodent Oatp orthologs and insertion of human SLCO1B1 and SLCO1B3. Histopathology scoring demonstrated elevated steatosis and inflammation scores for all NAFLD-treatment groups. Female mice had minor changes in SLCO1B1 expression in two of the four NAFLD treatment groups, and pitavastatin (PIT) area under the concentration-time curve (AUC) increased in female mice in only one of the diet-induced models. OATP1B3 expression decreased in male and female mice in the chemical-induced NAFLD model, with a coinciding increase in PIT AUC, indicating the chemical-induced model may better replicate changes in OATP1B3 expression and OATP substrate disposition observed in NASH patients. This research also tested a reported multifactorial pharmacokinetic interaction between NAFLD and silymarin, an extract from milk thistle seeds with notable OATP-inhibitory effects. Males showed no change in PIT AUC, whereas female PIT AUC increased 1.55-fold from the diet alone and the 1.88-fold from the combination of diet with silymarin, suggesting that female mice are more sensitive to pharmacokinetic changes than male mice. Overall, the humanized OATP1B model should be used with caution for modeling NAFLD and multifactorial pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Advanced stages of NAFLD cause decreased hepatic OATP1B abundance and increase systemic exposure to OATP substrates in human patients. The humanized OATP1B mouse strain may provide a clinically relevant model to recapitulate these observations and predict pharmacokinetic interactions in NAFLD. This research characterized three diet-induced and one drug-induced NAFLD model in a humanized OATP1B mouse model. Additionally, a multifactorial pharmacokinetic interaction was observed between silymarin and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Transportadores de Ânions Orgânicos , Silimarina , Humanos , Masculino , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Transgênicos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Silimarina/metabolismo , Interações Medicamentosas
3.
Mol Pharm ; 21(4): 1952-1964, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423793

RESUMO

Intravenously administered chemotherapeutic cabazitaxel is used for palliative treatment of prostate cancer. An oral formulation would be more patient-friendly and reduce the need for hospitalization. We therefore study determinants of the oral pharmacokinetics of cabazitaxel in a ritonavir-boosted setting, which reduces the CYP3A-mediated first-pass metabolism of cabazitaxel. We here assessed the role of organic anion-transporting polypeptides (OATPs) in the disposition of orally boosted cabazitaxel and its active metabolites, using the Oatp1a/b-knockout and the OATP1B1/1B3-transgenic mice. These transporters may substantially affect plasma clearance and hepatic and intestinal drug disposition. The pharmacokinetics of cabazitaxel and DM2 were not significantly affected by Oatp1a/b and OATP1B1/1B3 activity. In contrast, the plasma AUC0-120 min of DM1 in Oatp1a/b-/- was 1.9-fold (p < 0.05) higher than that in wild-type mice, and that of docetaxel was 2.4-fold (p < 0.05) higher. We further observed impaired hepatic uptake and intestinal disposition for DM1 and docetaxel in the Oatp-ablated strains. None of these parameters showed rescue by the OATP1B1 or -1B3 transporters in the humanized mouse strains, suggesting a minimal role of OATP1B1/1B3. Ritonavir itself was also a potent substrate for mOatp1a/b, showing a 2.9-fold (p < 0.0001) increased plasma AUC0-120 min and 3.5-fold (p < 0.0001) decreased liver-to-plasma ratio in Oatp1a/b-/- compared to those in wild-type mice. Furthermore, we observed the tight binding of cabazitaxel and its active metabolites, including docetaxel, to plasma carboxylesterase (Ces1c) in mice, which may complicate the interpretation of pharmacokinetic and pharmacodynamic mouse studies. Collectively, these results will help to further optimize (pre)clinical research into the safety and efficacy of orally applied cabazitaxel.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Taxoides , Animais , Humanos , Masculino , Camundongos , Carboxilesterase/metabolismo , Docetaxel , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Camundongos Transgênicos , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ritonavir , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
4.
Amino Acids ; 56(1): 11, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319413

RESUMO

The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.


Assuntos
Ácidos Dicarboxílicos , Fígado , Metabolômica , Animais , Humanos , Ratos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Biomarcadores , Células HEK293 , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
5.
Toxicon ; 238: 107592, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163460

RESUMO

The protein phosphatase inhibitor microcystin-LR (MC-LR), a hepatocyte-selective cyanotoxin, induces phenotypic changes in HEK293 OATP1B3-expressing (HEK293-OATP1B3) cells, which include cytoskeletal reorganization (HEK293-OATP1B3-AD) and anoikis resistance (HEK293-OATP1B3-FL) transformed cells, respectively. These cells acquire resistance to MC-LR and partial epithelial-mesenchymal transition (EMT) characteristics. In cancer cells, EMT is generally involved in multi-drug resistance. Here, we focused on the multi-drug resistance of HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. The MTT assay and immunoblotting were conducted to examine the responses of HEK293-OATP1B3, HEK293-OATP1B3-AD, and HEK293-OATP1B3-FL cells to multiple toxins and drugs that function as substrates for OATP1B3, including MC-LR, nodularin (Nod), okadaic acid (OA), and cisplatin (CDDP). HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells were more resistant to MC-LR, Nod, and OA than HEK293-OATP1B3 cells. Conversely, the three cell types were equivalently sensitive to CDDP. By using protein phosphatase assay, the reduction of the inhibitory effect of MC-LR and Nod on phosphatase activity might be one reason for the resistance to MC-LR and Nod in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Furthermore, the parental HEK293-OATP1B3 cells showed enhanced p53 phosphorylation and stabilization after MC-LR exposure, while p53 phosphorylation was attenuated in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Moreover, in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells, AKT phosphorylation was higher than that of the parental HEK293-OATP1B3 cell line. These results suggest that the multi-toxin resistance observed in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells is associated with AKT activation and p53 inactivation.


Assuntos
Toxinas Marinhas , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteínas Proto-Oncogênicas c-akt , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/farmacologia , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células HEK293 , Microcistinas/metabolismo , Ácido Okadáico/toxicidade , Transição Epitelial-Mesenquimal , Fosfoproteínas Fosfatases
6.
Mol Pharm ; 21(2): 854-863, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38235659

RESUMO

Organic anion-transporting polypeptides (OATPs) 1B1 and 1B3 are two highly homologous transport proteins. However, OATP1B1- and 1B3-mediated estradiol-17ß-glucuronide (E17ßG) uptake can be differentially affected by clotrimazole. In this study, by functional characterization on chimeric transporters and single mutants, we find that G45 in transmembrane domain 1 (TM1) and V386 in TM8 are critical for the activation of OATP1B3-mediated E17ßG uptake by clotrimazole. However, the effect of clotrimazole on the function of OATP1B3 is substrate-dependent as clotrimazole does not stimulate OATP1B3-mediated uptake of 4',5'-dibromofluorescein (DBF) and rosuvastatin. In addition, clotrimazole is not transported by OATP1B3, but it can efficiently permeate the plasma membrane due to its lipophilic properties. Homology modeling and molecular docking indicate that E17ßG binds in a substrate binding pocket of OATP1B3 through hydrogen bonding and hydrophobic interactions, among which its sterol scaffold forms hydrophobic contacts with V386. In addition, a flexible glycine residue at position 45 is essential for the activation of OATP1B3. Finally, clotrimazole is predicted to bind at an allosteric site, which mainly consists of hydrophobic residues located at the cytoplasmic halves of TMs 4, 5, 10, and 11.


Assuntos
Estradiol/análogos & derivados , Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Clotrimazol/farmacologia , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Simulação de Acoplamento Molecular , Transportadores de Ânions Orgânicos/metabolismo , Transporte Biológico
7.
BMC Pediatr ; 24(1): 82, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279097

RESUMO

BACKGROUND: Severe neonatal hyperbilirubinemia could lead to kernicterus and neonatal death. This study aimed to analyze the association between single nucleotide polymorphisms in genes involved in bilirubin metabolism and the incidence of severe hyperbilirubinemia. METHODS: A total of 144 neonates with severe hyperbilirubinemia and 50 neonates without or mild hyperbilirubinemia were enrolled in 3 institutions between 2019 and 2020. Twelve polymorphisms of 5 genes (UGT1A1, SLCO1B1, SLCO1B3, BLVRA, and HMOX1) were analyzed by PCR amplification of genomic DNA. Genotyping was performed using an improved multiplex ligation detection reaction technique based on ligase detection reaction. RESULTS: The frequencies of the A allele in UGT1A1-rs4148323 and the C allele in SLCO1B3-rs2417940 in the severe hyperbilirubinemia group (30.2% and 90.6%, respectively) were significantly higher than those in the controls (30.2% vs.13.0%, 90.6% vs. 78.0%, respectively, both p < 0.05). Haplotype analysis showed the ACG haplotype of UGT1A1 were associated with an increased hyperbilirubinemia risk (OR 3.122, p = 0.001), whereas the GCG haplotype was related to a reduced risk (OR 0.523, p = 0.018). CONCLUSION: The frequencies of the A allele in rs4148323 and the C allele in rs2417940 are highly associated with the incidence of severe hyperbilirubinemia in Chinese Han neonates. TRIAL REGISTRATION: Trial registration number:ChiCTR1800020424; Date of registration:2018-12-29.


Assuntos
Hiperbilirrubinemia Neonatal , Polimorfismo de Nucleotídeo Único , Recém-Nascido , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Alelos , Hiperbilirrubinemia Neonatal/genética , Glucuronosiltransferase/genética , China/epidemiologia , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo
8.
Carcinogenesis ; 45(1-2): 35-44, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856781

RESUMO

Solute carrier organic anion (SLCO) transporters (OATP transporters) are involved in cellular uptake of drugs and hormones. Germline variants in SLCO1B3 and SLCO2B1 have been implicated in prostate cancer progression and therapy response, including to androgen deprivation and statin medications, but results have appeared heterogeneous. We conducted a cohort study of five single-nucleotide polymorphisms (SNPs) in SLCO1B3 and SLCO2B1 with prior evidence among 3208 men with prostate cancer who participated in the Health Professionals Follow-up Study or the Physicians' Health Study, following participants prospectively after diagnosis over 32 years (median, 14 years) for development of metastases and cancer-specific death (lethal disease, 382 events). Results were suggestive of, but not conclusive for, associations between some SNPs and lethal disease and differences by androgen deprivation and statin use. All candidate SNPs were associated with SLCO mRNA expression in tumor-adjacent prostate tissue. We also conducted a systematic review and harmonized estimates for a dose-response meta-analysis of all available data, including 9 further studies, for a total of 5598 patients and 1473 clinical events. The A allele of the exonic SNP rs12422149 (14% prevalence), which leads to lower cellular testosterone precursor uptake via SLCO2B1, was associated with lower rates of prostate cancer progression (hazard ratio per A allele, 0.80; 95% confidence interval, 0.69-0.93), with little heterogeneity between studies (I2, 0.27). Collectively, the totality of evidence suggests a strong association between inherited genetic variation in SLCO2B1 and prostate cancer prognosis, with potential clinical use in risk stratification related to androgen deprivation therapy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Transportadores de Ânions Orgânicos , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/uso terapêutico , Androgênios , Seguimentos , Estudos de Coortes , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estudos Prospectivos , Genótipo , Transportadores de Ânions Orgânicos/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/uso terapêutico
10.
Pharm Res ; 40(12): 3025-3042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821766

RESUMO

OBJECTIVE: An in vitro relative activity factor (RAF) technique combined with mechanistic static modeling was examined to predict drug-drug interaction (DDI) magnitude and analyze contributions of different clearance pathways in complex DDIs involving transporter substrates. Atorvastatin and rifampicin were used as a model substrate and inhibitor pair. METHODS: In vitro studies were conducted with transfected HEK293 cells, hepatocytes and human liver microsomes. Prediction success was defined as predictions being within twofold of observations. RESULTS: The RAF method successfully translated atorvastatin uptake from transfected cells to hepatocytes, demonstrating its ability to quantify transporter contributions to uptake. Successful translation of atorvastatin's in vivo intrinsic hepatic clearance (CLint,h,in vivo) from hepatocytes to liver was only achieved through consideration of albumin facilitated uptake or through application of empirical scaling factors to transporter-mediated clearances. Transporter protein expression differences between hepatocytes and liver did not affect CLint,h,in vivo predictions. By integrating cis and trans inhibition of OATP1B1/OATP1B3, atorvastatin-rifampicin (single dose) DDI magnitude could be accurately predicted (predictions within 0.77-1.0 fold of observations). Simulations indicated that concurrent inhibition of both OATP1B1 and OATP1B3 caused approximately 80% of atorvastatin exposure increases (AUCR) in the presence of rifampicin. Inhibiting biliary elimination, hepatic metabolism, OATP2B1, NTCP, and basolateral efflux are predicted to have minimal to no effect on AUCR. CONCLUSIONS: This study demonstrates the effective application of a RAF-based translation method combined with mechanistic static modeling for transporter substrate DDI predictions and subsequent mechanistic interpretation.


Assuntos
Transportadores de Ânions Orgânicos , Rifampina , Humanos , Atorvastatina/metabolismo , Rifampina/farmacologia , Rifampina/metabolismo , Células HEK293 , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Interações Medicamentosas , Transportadores de Ânions Orgânicos/metabolismo
11.
Nat Commun ; 14(1): 5774, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723174

RESUMO

The organic anion transporting polypeptides OATP1B1 and OATP1B3 are membrane proteins that mediate uptake of drugs into the liver for subsequent conjugation and biliary excretion, a key step in drug elimination from the human body. Polymorphic variants of these transporters can cause reduced drug clearance and adverse drug effects such as statin-induced rhabdomyolysis, and co-administration of OATP substrates can lead to damaging drug-drug interaction. Despite their clinical relevance in drug disposition and pharmacokinetics, the structure and mechanism of OATPs are unknown. Here we present cryo-EM structures of human OATP1B1 and OATP1B3 bound to synthetic Fab fragments and in functionally distinct states. A single estrone-3-sulfate molecule is bound in a pocket located in the C-terminal half of OATP1B1. The shape and chemical nature of the pocket rationalize the preference for diverse organic anions and allow in silico docking of statins. The structure of OATP1B3 is determined in a drug-free state but reveals a bicarbonate molecule bound to the conserved signature motif and a histidine residue that is prevalent in OATPs exhibiting pH-dependent activity.


Assuntos
Transportador 1 de Ânion Orgânico Específico do Fígado , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Humanos , Transporte Biológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases , Proteínas de Membrana Transportadoras , Transportador 1 de Ânion Orgânico Específico do Fígado/química , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/química
12.
Biochem Pharmacol ; 214: 115681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429423

RESUMO

Although pharmacological treatment is the best option for most patients with advanced hepatocellular carcinoma (HCC), its success is very limited, partly due to reduced uptake and enhanced efflux of antitumor drugs. Here we have explored the usefulness of vectorizing drugs towards the organic anion transporting polypeptide 1B3 (OATP1B3) to enhance their efficacy against HCC cells. In silico studies (RNA-Seq data, 11 cohorts) and immunohistochemistry analyses revealed a marked interindividual variability, together with general downregulation but still expression of OATP1B3 in the plasma membrane of HCC cells. The measurement of mRNA variants in 20 HCC samples showed the almost absence of the cancer-type variant (Ct-OATP1B3) together with marked predominance of the liver-type variant (Lt-OATP1B3). In Lt-OATP1B3-expressing cells, the screening of 37 chemotherapeutical drugs and 17 tyrosine kinase receptors inhibitors (TKIs) revealed that 10 classical anticancer drugs and 12 TKIs were able to inhibit Lt-OATP1B3-mediated transport. Lt-OATP1B3-expressing cells were more sensitive than Mock parental cells (transduced with empty lentiviral vectors) to some Lt-OATP1B3 substrates (paclitaxel and the bile acid-cisplatin derivative Bamet-UD2), but not to cisplatin, which is not transported by Lt-OATP1B3. This enhanced response was abolished by competition with taurocholic acid, a known Lt-OATP1B3 substrate. Tumors subcutaneously generated in immunodeficient mice by Lt-OATP1B3-expressing HCC cells were more sensitive to Bamet-UD2 than those derived from Mock cells. In conclusion, Lt-OATP1B3 expression should be screened before deciding the use of anticancer drugs substrates of this carrier in the personalized treatment of HCC. Moreover, Lt-OATP1B3-mediated uptake must be considered when designing novel anti-HCC targeted drugs.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transportadores de Ânions Orgânicos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Cisplatino/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Humanos
13.
Drug Metab Dispos ; 51(10): 1342-1349, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442606

RESUMO

Uptake of xenobiotics by hepatocytes is mediated by specific proteins, including organic anion transporting polypeptides (OATPs), residing on the basolateral (sinusoidal) plasma membrane. Many of the OATPs have PDZ consensus binding sites, determined by their C-terminal 4 amino acids, while others do not. Mouse and rat OATP1A1 are associated with PDZK1, which is necessary for their trafficking to the plasma membrane. humanOATP1B1 (hOATP1B1) is a major drug transporter in human liver. Although localized to the plasma membrane, it was thought to lack a PDZ consensus motif, suggesting that the trafficking paradigm for murine OATPs is not applicable to human liver. The aim of the present study was to determine whether hOATP1B1 is a ligand for hPDZK1. hOATP1B1 immunoprecipitates with hPDZK1 following co-expression in 293T cells as well as in normal human liver. Co-expression with each of the 4 PDZ domains revealed interaction with domain 1 only. A truncated version of hOATP1B1 that lacks its terminal 4 amino acid PDZ binding motif as well as hOATP1B3, which does not contain a PDZ binding consensus motif, failed to interact with hPDZK1. Immunofluorescence microscopy of hOATP1B1 in stably transfected HeLa cells that endogenously express hPDZK1 showed that it distributes predominantly along the plasma membrane whereas hOATP1B1 lacking its terminal 4 amino acids distributes primarily intracellularly with little plasma membrane localization. Similar to findings in rats and mice, human OATP1B1 is a ligand for PDZK1 and requires interaction with PDZK1 for optimal trafficking to the hepatocyte plasma membrane. SIGNIFICANCE: Previous studies suggested that OATP1B1, a major xenobiotic transporter in human liver, does not have a PDZ binding consensus motif and does not follow the paradigm for subcellular trafficking and function that was established for OATP1A1 in murine liver. We now demonstrated that OATP1B1 but not OATP1B3 has a PDZ binding consensus motif that mediates binding to PDZK1 and is required for its trafficking to the plasma membrane. Such interaction could be an important previously unrecognized modulator of transport function.


Assuntos
Proteínas de Membrana , Transportadores de Ânions Orgânicos , Animais , Humanos , Camundongos , Ratos , Aminoácidos/metabolismo , Membrana Celular/metabolismo , Células HeLa , Hepatócitos/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
14.
Bioelectrochemistry ; 152: 108449, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37130506

RESUMO

Due to its fluorescent properties and high yield of singlet oxygen, rose bengal (RB) is one of the most promising photosensitizers for cancer treatment. However, the negative charge of RB molecule may significantly hamper its intracellular delivery by passive diffusion through the cell membrane. Thus, specific membrane protein transporters may be needed. The organic anion transporting polypeptides (OATPs) are a well-characterized group of membrane protein transporters, responsible for cellular uptake of a number of drugs. To our knowledge, this is the first study that evaluates cellular transport of RB mediated by the OATP transporter family. First, electrified liquid-liquid interface, together with biophysical analysis and molecular dynamics simulations were used to characterize the interaction of RB with several models of a cellular membranes. These experiments proved that RB interacts only with the membrane's surface, without spontaneously crossing the lipid bilayer. Evaluation of intracellular uptake of RB by flow cytometry and confocal microscopy showed significant differences in uptake between liver and intestinal cell line models differing in expression of OATP transporters. The use of specific pharmacological inhibitors of OATPs, together with Western blotting and in silico analysis, indicated that OATPs are crucial for cellular uptake of RB.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Rosa Bengala/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Fígado , Transporte Biológico
15.
Mol Pharm ; 20(6): 3020-3032, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134201

RESUMO

Drug interactions involving the inhibition of hepatic organic anion transporting polypeptides (OATPs) 1B1 and OATP1B3 are considered important. Therefore, we sought to study various sulfated bile acids (BA-S) as potential clinical OATP1B1/3 biomarkers. It was determined that BA-S [e.g., glycochenodeoxycholic acid 3-O-sulfate (GCDCA-S) and glycodeoxycholic acid 3-O-sulfate (GDCA-S)] are substrates of OATP1B1, OATP1B3, and sodium-dependent taurocholic acid cotransporting polypeptide (NTCP) transfected into human embryonic kidney 293 cells, with minimal uptake evident for other solute carriers (SLCs) like OATP2B1, organic anion transporter 2, and organic cation transporter 1. It was also shown that BA-S uptake by plated human hepatocytes (PHH) was inhibited (≥96%) by a pan-SLC inhibitor (rifamycin SV), and there was greater inhibition (≥77% versus ≤12%) with rifampicin (OATP1B1/3-selective inhibitor) than a hepatitis B virus myristoylated-preS1 peptide (NTCP-selective inhibitor). Estrone 3-sulfate was also used as an OATP1B1-selective inhibitor. In this instance, greater inhibition was observed with GDCA-S (76%) than GCDCA-S (52%). The study was expanded to encompass the measurement of GCDCA-S and GDCA-S in plasma of SLCO1B1 genotyped subjects. The geometric mean GDCA-S concentration was 2.6-fold (90% confidence interval 1.6, 4.3; P = 2.1 × 10-4) and 1.3-fold (1.1, 1.7; P = 0.001) higher in individuals homozygous and heterozygous for the SLCO1B1 c.521T > C loss-of-function allele, respectively. For GCDCA-S, no significant difference was noted [1.2-fold (0.8, 1.7; P = 0.384) and 0.9-fold (0.8, 1.1; P = 0.190), respectively]. This supported the in vitro data indicating that GDCA-S is a more OATP1B1-selective substrate (versus GCDCA-S). It is concluded that GCDCA-S and GDCA-S are viable plasma-based OATP1B1/3 biomarkers, but they are both less OATP1B1-selective when compared to their corresponding 3-O-glucuronides (GCDCA-3G and GDCA-3G). Additional studies are needed to determine their utility versus more established biomarkers, such as coproporphyrin I, for assessing inhibitors with different OATP1B1 (versus OATP1B3) inhibition signatures.


Assuntos
Transportadores de Ânions Orgânicos , Humanos , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Sulfatos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Ácidos e Sais Biliares , Transporte Biológico/fisiologia , Biomarcadores/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
16.
Drug Metab Dispos ; 51(9): 1089-1104, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37137718

RESUMO

In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-ß-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.


Assuntos
Transportadores de Ânions Orgânicos , Humanos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Transportador 1 de Ânion Orgânico Específico do Fígado , Hepatócitos , Proteínas de Membrana Transportadoras , Biomarcadores , Interações Medicamentosas
17.
J Med Chem ; 66(10): 6567-6576, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37159947

RESUMO

Five amphiphilic, anionic Mn(II) complexes were synthesized as contrast agents targeted to organic anion transporting polypeptide transporters (OATP) for liver magnetic resonance imaging (MRI). The Mn(II) complexes are synthesized in three steps, each from the commercially available trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) chelator, with T1-relaxivity of complexes ranging between 2.3 and 3.0 mM-1 s-1 in phosphate buffered saline at an applied field strength of 3.0 T. Pharmacokinetics were assessed in female BALB/c mice by acquiring T1-weighted images dynamically for 70 min after agent administration and determining contrast enhancement and washout in various organs. Uptake of Mn(II) complexes in human OATPs was investigated through in vitro assays using MDA-MB-231 cells engineered to express either OATP1B1 or OATP1B3 isoforms. Our study introduces a new class of Mn-based OATP-targeted contrast that can be broadly tuned via simple synthetic protocols.


Assuntos
Fígado , Transportadores de Ânions Orgânicos , Camundongos , Animais , Feminino , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Fígado/diagnóstico por imagem , Proteínas de Membrana Transportadoras , Imageamento por Ressonância Magnética/métodos , Transportadores de Ânions Orgânicos Sódio-Independentes
18.
Planta Med ; 89(10): 940-951, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37236232

RESUMO

Traditional Chinese medicine injections have been widely used in China for the treatment of various diseases. Transporter-mediated drug-drug interactions are a major contributor to adverse drug reactions. However, the research on transporter-mediated Traditional Chinese medicine injection-drug interactions is limited. Shuganning injection is a widely used Traditional Chinese medicine injection for treating various liver diseases. In this study, we investigated the inhibitory effect of Shuganning injection and its four main ingredients (baicalin, geniposide, chlorogenic acid, and oroxylin A) on 9 drug transporters. Shuganning injection strongly inhibited organic anion transporter 1 and organic anion transporter 3 with IC50 values < 0.1% (v/v), and moderately inhibited organic anion transporter 2, organic anion transporting-polypeptide 1B1, and organic anion transporting-polypeptide 1B3 with IC50 values < 1.0%. Baicalin, the most abundant bioactive ingredient in the Shuganning injection, was identified as both an inhibitor and substrate of organic anion transporter 1, organic anion transporter 3, and organic anion transporting-polypeptide 1B3. Oroxylin A had the potential to act as both an inhibitor and substrate of organic anion transporting-polypeptide 1B1 and organic anion transporting-polypeptide 1B3. In contrast, geniposide and chlorogenic acid had no significant inhibitory effect on drug transporters. Notably, Shuganning injection markedly altered the pharmacokinetics of furosemide and atorvastatin in rats. Using Shuganning injection as an example, our findings support the implementation of transporter-mediated Traditional Chinese medicine injection-drug interactions in the development of Traditional Chinese medicine injection standards.


Assuntos
Transportadores de Ânions Orgânicos , Ratos , Animais , Transportadores de Ânions Orgânicos Sódio-Independentes , Transportador 1 de Ânion Orgânico Específico do Fígado , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Ácido Clorogênico , Medicina Tradicional Chinesa , Interações Medicamentosas , Peptídeos , Medicamentos sem Prescrição
19.
J Clin Pharmacol ; 63(8): 918-927, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37043676

RESUMO

Drug-drug interaction potentials of ensitrelvir, a novel oral inhibitor of 3C-like protease of severe acute respiratory syndrome coronavirus 2, for drug transporters were evaluated by in vitro and clinical studies. The target drug transporters assessed were P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic anion transporter (OAT) 1, OAT3, organic cation transporter (OCT) 1, OCT2, and multidrug and toxin extrusion 1 and 2K. In vitro study revealed that ensitrelvir is a substrate for P-gp and BCRP and inhibits P-gp, BCRP, OATP1B1, OATP1B3, OCT1, and OAT3. Based on these results, a clinical drug-drug interaction study to evaluate the effect of ensitrelvir on the pharmacokinetics of P-gp, BCRP, OATP1B1, OATP1B3, and OCT1 substrates was conducted with a cocktail approach using digoxin (P-gp substrate), rosuvastatin (BCRP, OATP1B1, and OATP1B3 substrate), and metformin (OCT1 substrate). The cocktail was administered first, and after the washout period, the cocktail was coadministered with 500 mg of ensitrelvir. No treatment-emergent adverse events were observed. Pharmacokinetic analyses demonstrated that the ratios (90% confidence intervals) of "cocktail with ensitrelvir" to "cocktail without ensitrelvir" for maximum plasma concentration and area under the plasma concentration-time curve were, respectively, 2.17 (1.72-2.73) and 1.31 (1.13-1.52) for digoxin, 1.97 (1.73-2.25) and 1.65 (1.47-1.84) for rosuvastatin, and 1.03 (0.91-1.16) and 1.02 (0.94-1.11) for metformin. The results indicate that the exposure levels of digoxin and rosuvastatin increased when coadministered with ensitrelvir, but those of metformin were not changed. In conclusion, ensitrelvir has an impact on the exposure levels of P-gp, BCRP, OATP1B1, and OATP1B3 substrates.


Assuntos
COVID-19 , Metformina , Transportadores de Ânions Orgânicos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , SARS-CoV-2 , Rosuvastatina Cálcica/farmacocinética , Inibidores de Proteases , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Interações Medicamentosas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Digoxina/farmacocinética , Inibidores Enzimáticos , Transportador 1 de Cátions Orgânicos , Metformina/farmacocinética , Transporte Biológico , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
20.
Basic Clin Pharmacol Toxicol ; 132(6): 521-531, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988399

RESUMO

Adverse effects are the major limiting factors in combinatorial chemotherapies. To identify genetic associations in ovarian cancer chemotherapy-induced toxicities and therapy outcomes, we examined a cohort of 101 patients receiving carboplatin-paclitaxel treatment with advanced high-grade serous ovarian cancers. Based on literature and database searches, we selected 19 candidate polymorphisms, designed a multiplex single nucleotide polymorphism-genotyping assay and applied Cox regression analysis, case-control association statistics and the log-rank Mantel-Cox test. In the Cox regression analysis, the SLCO1B3 rs1052536 AA-genotype was associated with a reduced risk of any severe toxicity (hazard ratio = 0.35, p = 0.023). In chi-square allelic test, the LIG3 rs1052536 T-allele was associated with an increased risk of neuropathy (odds ratio [OR] = 2.79, p = 0.031) and GSTP1 rs1695 G allele with a poorer response in the first-line chemotherapy (OR = 2.65, p = 0.026). In Kaplan-Meier survival analysis, ABCB1 rs2032582 TT-genotype was associated with shorter overall survival (uncorrected p = 0.025) and OPRM1 rs544093 GG and GT genotypes with shorter platinum-free interval (uncorrected p = 0.027) and progression-free survival (uncorrected p = 0.012). Results suggest that SLCO1B3 and LIG3 variants are associated with the risk of adverse effects in patients receiving carboplatin-paclitaxel treatment, the GSTP1 variant may affect the treatment response and ABCB1 and OPRM1 variants may influence the prognosis.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carboplatina/efeitos adversos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Paclitaxel/efeitos adversos , Polimorfismo de Nucleotídeo Único , Genótipo , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Glutationa S-Transferase pi/genética , Receptores Opioides mu/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , DNA Ligase Dependente de ATP/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...